Voltage-dependent ionic conductances of type I spiral ganglion cells from the guinea pig inner ear.

نویسنده

  • J Santos-Sacchi
چکیده

Type I spiral ganglion cells provide the afferent innervation to the inner hair cells of the mammalian organ of Corti and project centrally to the cochlear nucleus. While single-unit studies conducted over the past several decades have provided a wealth of information concerning the response characteristics of these neurons and, to some extent, their receptor targets, little is known about the neuron's intrinsic electrical properties. These properties undeniably will contribute to the firing patterns induced by acoustic stimuli. Type I spiral ganglion cell somata from the guinea pig inner ear were acutely isolated and the voltage-dependent conductances were analyzed with the whole-cell voltage clamp. Under conditions that mimic the normal intra- and extracellular ionic environments, type I spiral ganglion cells demonstrate fast inward TTX-sensitive Na currents (whose current density varied markedly among cells) and somewhat more slowly developing outward K currents. Resting potentials averaged -67.3 mV. Under current clamp, no spontaneous spike activity was noted, but short current injections produced graded action potentials with after hyperpolarizations lasting several milliseconds. The nondecaying outward K current activated at potentials near rest and was characterized by a pronounced rectification. The kinetics of the Na and K currents were rapid. Maximum peak inward Na currents occurred within 400 microseconds, between a voltage range of -10 and 0 mV, and inactivated within 4 msec. Recovery from inactivation was also rapid. At a holding potential of -80 mV, the time constant for recovery from an inactivating voltage step to -10 mV was 2.16 msec. Above -50 mV outward K currents reach half-maximal amplitude within 1.5 msec. In addition to these currents, a slow noninactivating TTX-sensitive inward current was observed that was blockable with Cd2+ or Gd3+. Problems encountered with blocking the tremendous outward K current hampered the characterization of this inward current. Similarities between the kinetics of ganglion cell currents and some of the rapid temporal characteristics of eighth nerve single-unit activity confirm the notion that intrinsic membrane properties help shape auditory neuron responses to sound.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Auditory function and inner ear pathology in guinea pigs with peripheral nerve demyelination

The audiological or physiological data showed that auditory neuropathy was due to the demylination disease in peripheral nerve, especially in auditory nerve. The aim of this study was to explore the changes of auditory function and auditory nerve pathology through establishing a guinea pig model with demyelinated peripheral nerve. The guinea pig model was established by immunizing guinea pigs w...

متن کامل

Therapeutic potential of cell therapy in the repair of hair cells and spiral ganglion neurons: review article

The mammalian cochlea is a highly complex structure which contains several cells, including sensory receptor or hair cells. The main function of the cochlear hair cells is to convert the mechanical vibrations of the sound into electrical signals, then these signals travel to the brain along the auditory nerve. Auditory hair cells in some amphibians, reptiles, fish, and birds can regenerate or r...

متن کامل

Neural-Induced Human Mesenchymal Stem Cells Promote Cochlear Cell Regeneration in Deaf Guinea Pigs

OBJECTIVES In mammals, cochlear hair cell loss is irreversible and may result in a permanent sensorineural hearing loss. Secondary to this hair cell loss, a progressive loss of spiral ganglion neurons (SGNs) is presented. In this study, we have investigated the effects of neural-induced human mesenchymal stem cells (NI-hMSCs) from human bone marrow on sensory neuronal regeneration from neomycin...

متن کامل

Radioprotective Effect of Aminothiol PrC-210 on Irradiated Inner Ear of Guinea Pig

Radiotherapy of individuals suffering with head & neck or brain tumors subserve the risk of sensorineural hearing loss. Here, we evaluated the protective effect of Aminothiol PrC-210 (3-(methyl-amino)-2-((methylamino)methyl)propane-1-thiol) on the irradiated inner ear of guinea pigs. An intra-peritoneal or intra-tympanic dose of PrC-210 was administered prior to receiving a dose of gamma radiat...

متن کامل

Immunocytochemical localization of glutamate immunoreactivity in the guinea pig cochlea.

The localization of glutamate immunoreactivity was examined in the guinea pig cochlea using affinity purified polyclonal antibodies to glutamate and immunoperoxidase post-embedding staining techniques on one micron plastic sections. Glutamate immunoreactive staining was seen in both inner and outer hair cells and in spiral ganglion cells and auditory nerve fibers. These results support the hypo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 13 8  شماره 

صفحات  -

تاریخ انتشار 1993